

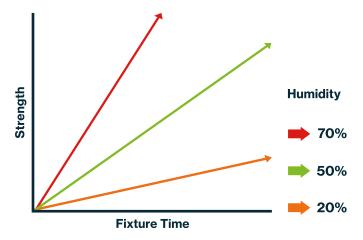
Technical Information PC01 High

Product Description

Procure™ PC01 is a high performance, fast curing, medium viscosity cyanoacrylate. Its surface insensitive properties mean it will bond almost any substrate, including most plastics, rubbers and metals to themselves and each other. Ideal for bonding porous or permeable substrates such as leather, fabric, wood and paper.

Physical Properties

Liquid State		Cured State					
Base	Ethyl Cyanoacrylate	Colour	Clear				
Colour	Clear	Specific Gravity (20°C)	1.1-1.3				
Specific Gravity (20°C)	1.05-1.06	Service Temperature	-55 °C to 80°C				
Refraction Index (n 20D)	1.439	Refractive Index (n 20D)	1.49				
Flash Point (°C)	>80°C	Dielectric Constant (at 10MHz)	3.5				
Shelf Life	12 months						
Boiling Point	65°C at 16mmHg	Soluble in Acetone, Nitromethane.					
Viscosity (cP)	100-200]					


Bond Strength

(Tensile shear strength, cured for 24 hours at 20-25°C)

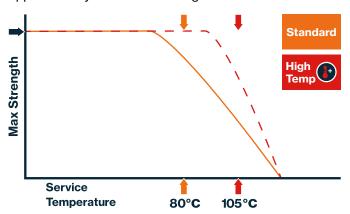
Substrate	N/mm²
Rigid PVC to Rigid PVC	4 to 6
ABS to ABS	5 to 7
Nitrile Rubber to Nitrile Rubber	5 to 9
Stainless steel to Stainless steel	15 to 18
Aluminium to Aluminium	14 to 17

Fixture Time vs. Humidity

Cyanoacrylates require surface moisture on the substrates in order to initiate the curing mechanism. The speed of cure is reduced in low-humidity conditions.

The graph depicted is not scientific and is for guidance only.

Typical Fixture Time Performance


Substrate	Seconds
Steel to Steel	<20
ABS to ABS	5-8
Nitrile Rubber to Nitrile Rubber	<5
Wood to Wood (balsa)	<3

Conversions						
(°C x 1.8) + 32	°F					
N/mm² ÷ 0.098	kg/cm²					
N/mm² x 145	psi					
MPa x 145	psi					
mPa·s	сР					

(Full cure and maximum strength achieved after 24 hours)

Hot Strength

Procure™ cyanoacrylates are suitable for use at temperatures up to 80°C. At 80°C the bond will be approximately 70% of the strength at 21°C.

The graph depicted is not scientific and is for guidance only.

Chemical/Solvent Resistance

Procure™ cyanoacrylates exhibit excellent chemical resistance to most oils and solvents including motor oil, leaded petrol, ethanol and isopropanol. Cyanoacrylates are generally not resistant to high levels of moisture or humidity over extended periods of time.

Fixture Time vs. Bond Gap

Procure™ cyanoacrylates give best results on close fitting parts. The product should be applied in a very thin line in order to ensure rapid polymerisation and a strong bond. Excessive bond gaps will result in slower fixture times.

Fixture Time vs. Activator

Procure™ activators **PC750**, **PC780** and **PC790** may be used with cyanoacrylates where a faster cure speed is required. Fixture times of less than 2 seconds can be obtained with most cyanoacrylates. Testing on the parts to measure the effect is recommended.

Directions For Use

- 1. Make sure the surfaces to be bonded are clean and dry.
- 2. Dispense adhesive to one surface only. Apply only enough to leave a thin film after compression.
- 3. Press parts together and hold firmly for a few seconds. (Maximum strength is achieved in 24 hours).
- 4. Procure™ activator can be used to cure exposed adhesive outside of the joint, to help prevent blooming.
- 5. Wipe off excess adhesive from the top of the container and recap.

Priming

Procure™ PC77 primer is recommended for use on low energy plastic surfaces such as polyethylene, polypropylene, PTFE and thermoplastic rubber materials.

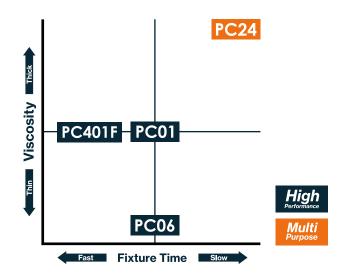
Apply to one surface only. PC77 also has a mild activating effect which may accelerate the cure speed of cyanoacrylate adhesives.

Debonding

Cured cyanoacrylate may be removed from most substrates, and parts disassembled, with Procure™ PC68 debonder - however, ensure to test compatibility of the substrate with PC68 first as this may dissolve some plastics.

It is not possible to fully remove cyanoacrylate from fabrics.

Dispensing


Factors that affect dispensing are pressure, time and needle size. As a general reference low viscosity liquid would need a small needle diameter and less pressure, a high viscosity liquid would need a larger needle diameter (tapered recommended) with higher pressure to dispense.

Recommended Tip for Hand Dispensing													
	More Less												
Έ		Size Indicator	•	•	•	•	٠						
Gauge Char		Metal Tip	17	18	19	20	21	22	23	24	25	26	27
		Tapered Tip		18		20		22			25		
		Colour											

This chart is a recommended gauge for hand dispensing based on the product viscosity, other factors not mentioned above may also affect dispensing. Tip colour may vary.

Alternative Product Suggestions

The following suggested products will allow adjustments to the fixture time performance, and viscosity if needed.

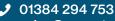
The graph depicted is not scientific and is for guidance only.

Storage

Store in a cool area and out of direct sunlight. Refrigeration to 5°C gives optimum storage stability.

General Information

For information on safe handling of this product consult the Safety Data Sheet (SDS).



The data contained herein are furnished for informational purposes only and are believed to be reliable. However, Cyanotec Ltd does not assume responsibility for any results obtained by persons over whose methods Cyanotec Ltd has no control. It is the user's responsibility to determine the suitability of Cyanotec Ltd products or any production methods mentioned herein for a particular purpose, and to adopt such precautions as may be advisable for the protection of property and persons against any hazards that may be involved in the handling and use of any Cyanotec Ltd products. Cyanotec Ltd specifically disclaims all warranties express or implied, including warranties of saleability and suitability for a particular purpose arising from sale or use of Cyanotec Ltd products. Cyanotec Ltd further disclaims any liability for consequential or incremental damages of any kind including lost profits.

Page 2 of 2 V2.1 April 2022

